GKN Aerospace Commences Collaborative Research to Create Additive Material for Aerospace


Notice: Trying to get property 'post_parent' of non-object in /home/defensea/english.defensearabia.com/wp-includes/link-template.php on line 479

Notice: Trying to get property 'post_name' of non-object in /home/defensea/english.defensearabia.com/wp-includes/link-template.php on line 517

Notice: Trying to get property 'ID' of non-object in /home/defensea/english.defensearabia.com/wp-includes/link-template.php on line 534

Notice: Trying to get property 'post_excerpt' of non-object in /home/defensea/english.defensearabia.com/wp-content/themes/mh-magazine/includes/mh-custom-functions.php on line 392

Notice: Trying to access array offset on value of type bool in /home/defensea/english.defensearabia.com/wp-content/themes/mh-magazine/includes/mh-custom-functions.php on line 394

Notice: Trying to get property 'post_title' of non-object in /home/defensea/english.defensearabia.com/wp-content/themes/mh-magazine/includes/mh-custom-functions.php on line 394

GKN Aerospace is to lead a 3 year, GBP3.1m, collaborative research programme to develop titanium powder specifically formulated and blended to meet the needs of additive manufacturing (AM) of aerospace components. The programme, called TiPOW (Titanium Powder for net-shape component manufacture) will also commence work developing the techniques and equipment that will produce the powder consistently, in quantity and at a lower price than today’s material.

The TiPOW programme is backed by the UK’s Aerospace Technology Institute (ATI) and the country’s innovation agency, Innovate UK. Consortium partners include UK companies Phoenix Scientific Industries Ltd and Metalysis and the University of Leeds. As programme leader, GKN’s aerospace business will also draw on the expertise of the GKN Powder Metallurgy division a world-leading supplier of metal powders and precision engineered components.

Today additive manufacturing uses alloys and powders that have not been developed for these processes and so are not optimised for this environment. Together the partners will investigate developing titanium alloys and powders with the characteristics that are specifically suited to AM. They will then define the production methods that will produce AM-designed materials to ensure cost is minimised whilst production quality, quantity and consistency all meet the rigorous standards required by aerospace. The TiPOW programme will also explore effective re-use and recycling of titanium material, and a study of potential applications for the recycled material.

Russ Dunn, Senior Vice President Engineering & Technology explains: “To date research into AM has focused largely on evolving the processes we will require to enter full scale production but if these processes are to make a significant breakthrough, the quality, repeatability and cost of the material we use will be critical. Working with our industrial and academic partners in the TiPOW programme and leveraging expertise from across GKN, we will begin the process of addressing this issue.”

The TiPOW programme forms one element in a major AM research and development initiative across GKN, and will run alongside another GKN Aerospace-led, ATI supported, programme called ‘Horizon (AM)’. This programme aims to take a number of promising AM techniques through to viable production processes. Five dedicated AM development centres have been established in North America and Europe each clearly focused on progressing specific additive processes and technologies.

Gary Elliott, CEO of the UK’s Aerospace Technology Institute (ATI) adds: “The UK is already a world leader in aerospace technology and the Aerospace Technology Institute is delighted to be investing in this highly creative project. TIPOW will give us a better understanding and insight into improving airplane performance and will undoubtedly deliver more technological advances to the industry. This programme highlights the capabilities of the UK aerospace, promotes healthy competition and will lay the groundwork for even more innovation.”

Russ Dunn concludes: “We believe AM has the potential to revolutionise the design and manufacture of aircraft, unlocking innovations in low drag, high-performance wing designs and lighter, even more efficient engine systems that will dramatically improve airframe performance and reduce noxious emissions and noise.”

Be the first to comment

Leave a Reply

Your email address will not be published.


*